TEXT2STORY WORKSHOP @ ECIR

END-TO-END **TEMPORAL RELATION EXTRACTION IN THE** CLINICAL DOMAIN

JOSÉ JAVIER SAIZ (Barcelona Supercomputing Center), BEGOÑA ALTUNA (HiTZ Center – IXA)

2ND APRIL 2023

Motivation: Problem background

Clinical narratives are the most reviewed data in the clinical workflow because they contain *abundant* and *valuable* information.

Poor accessibility information to ultimately leads to worse clinical care.

Motivation: Problem background

With **Temporal Relation Extraction (TRE)**, we can retrieve useful timelines that require *less effort* and *time* to assimilate the information.

Motivation: Previous approaches

	Other clinical TRE approaches				
Task	Focus on Relation extraction (Haq et al. 2021, Lin et al. 2020, Zhou et al. 2020)				
Relation types	Explicit, intra-sentence temporal relations (Alfattni et al. 2021, Guan et al. 2020)	Int			

Our clinical TRE approach

End-to-End: Entity extraction + Relation extraction

Explicit and implicit + ra-sentence and cross-sentence temporal relations

Motivation: Our proposal

 Since we use shared model weights from the pre-training phase, fine-tuning allows to adapt a general-domain model with very *low resources and time*.

*Relation Extraction By End-to-end Language generation (Cabot et al. 2021)

Fine-tuned model for clinical TRE

Methodology: Dataset

on

The i2b2 2012 corpus contains 310 discharge summaries annotated with clinical events, temporal *relations*, and time expressions.

Methodology: Problem formulation

Given a clinical document x containing a set of n temporal relations, we want to maximize the probability of generating the desired sequence of relations y autoregressively.

$$\hat{y} = \underset{y}{\operatorname{arg\,max}} p(y \mid x) = \underset{y}{\operatorname{arg\,max}} \prod_{i=1}^{n} p(y_i \mid y_{< i}, x)$$

Any relation y_i is represented like a 6-tuple of tokens, such as:

$$y_{j} = \{ \begin{array}{cc} y_{j_{1}}, & y_{j_{2}}, & y_{j_{3}}, & y_{j_{4}}, & y_{j_{5}}, & y_{j_{6}}, \dots \\ \text{ accident rehab before \dots \end{array} }$$

x = "The patient had an *accident* and went to *rehab*."

Methodology: Model overview

We are able to extract entities, time expressions and relations in one pass.

Experimentation: Evaluation

Experimentation: Results

System	TLINK		EVENT		TIMEX3		
	F1	Ρ	R	Span F1	Type P	Span F1	Type P
Tang et al., 2013	0.63	0.7	0.57	0.9	0.84	0.87	0.85
Xu et al., 2013	0.59	0.59	0.59	0.92	0.86	0.91	0.88
Our proposal*	0.58	0.65	0.52	0.78	0.72	0.77	0.65
Roberts et al., 2013	0.53	0.48	0.57	0.89	0.8	0.89	0.78

*Results after 10 epochs of fine-tuning on a single Tesla P100 GPU.

Analysis

Conclusion & Future work

• Demonstrated that clinical TRE can be performed as a *single task*

in a *resource- and time-limited* environment, but ...

- Calculating the **transitive closure** would allow to:
 - mitigate the class imbalance.

- take into account a higher number of implicit relations. \leftarrow - \rightarrow
- expand the training corpus.
- Use a training corpus with **narrative containers**.

